1.200.000 VISUALIZAÇÕES! OBRIGADO!!

segunda-feira, 11 de janeiro de 2010

O sistema binário

O sistema binário ou base 2, é um sistema de numeração posicional em que todas as quantidades se representam com base em dois numeros, com o que se dispõe das cifras: zero e um (0 e 1).

Os computadores digitais trabalham internamente com dois níveis de tensão, pelo que o seu sistema de numeração natural é o sistema binário (aceso, apagado). Com efeito, num sistema simples como este é possível simplificar o cálculo, com o auxílio da lógica booleana. Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. Um agrupamento de 8 bits corresponde a um byte (Binary Term). Um agrupamento de 4 bits é chamado de nibble.

O sistema binário é base para a Álgebra booleana (de George Boole - matemático inglês), que permite fazer operações lógicas e aritméticas usando-se apenas dois dígitos ou dois estados (sim e não, falso e verdadeiro, tudo ou nada, 1 ou 0, ligado e desligado). Toda eletrônica digital e computação está baseada nesse sistema binário e na lógica de Boole, que permite representar por circuitos eletrônicos digitais (portas lógicas) os números, caracteres, realizar operações lógicas e aritméticas. Os programas de computadores são codificados sob forma binária e armazenados nas mídias (memórias, discos, etc) sob esse formato.

História

Página do artigo "Explication de l'Arithmétique Binaire", 1703/1705, de Leibniz.

O matemático indiano Pingala apresentou a primeira descrição conhecida de um sistema numérico binário no século III a.C..

Um conjunto de 8 trigramas e 64 hexagramas, análogos a números binários com precisão de 3 e 6 bits, foram utilizados pelos antigos chineses no texto clássico I Ching. Conjuntos similares de combinações binárias foram utilizados em sistemas africanos de adivinhação tais como o Ifá, bem como na Geomancia do medievo ocidental.

Uma sistematização binária dos hexagramas do I Ching, representando a sequência decimal de 0 a 63, e um método para gerar tais sequências, foi desenvolvida pelo filósofo e estudioso Shao Yong no século XI. Entretanto, não há evidências que Shao Yong chegou à aritmética binária.

O sistema numérico binário moderno foi documentado de forma abrangente por Gottfried Leibniz no século XVIII em seu artigo "Explication de l'Arithmétique Binaire". O sistema de Leibniz utilizou 0 e 1, tal como o sistema numérico binário corrente nos dias de hoje.

Em 1854, o matemático britânico George Boole publicou um artigo fundamental detalhando um sistema lógico que se tornaria conhecido como Álgebra Booleana. Seu sistema lógico tornou-se essencial para o desenvolvimento do sistema binário, particularmente sua aplicação a circuitos eletrônicos.

Em 1937, Claude Shannon produziu sua tese no MIT que implementava Álgebra Booleana e aritmética binária utilizando circuitos elétricos pela primeira vez na história. Intitulado "A Symbolic Analysis of Relay and Switching Circuits", a tese de Shannon praticamente fundou o projeto de circuitos digitais.

Operações com binários

Binários a decimais

Dado um número N, binário, para expressá-lo em decimal, deve-se escrever cada número que o compõe (bit), multiplicado pela base do sistema (base = 2), elevado à posição que ocupa. Uma posição à esquerda da vírgula representa uma potência positiva e à direita, uma potência negativa. A soma de cada multiplicação de cada dígito binário pelo valor das potências resulta no número real representado. Exemplo:

1011(binário)

1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 = 11

Portanto, 1011 é 11 em decimal

Decimais em binários

Soma de Binários

0+0=0
0+1=1
1+0=1
1+1=10, ou seja 0 e vai 1* (para somar ao digito imediatamente à esquerda)

Para somar dois números binários, o procedimento é o seguinte:

Exemplo 1:

     *
1100
+ 111
-----
= 10011

Explicando: Os números binários são base 2, ou seja, há apenas dois algarismos: 0 (zero) ou 1 (um). Na soma de 0 com 1 o total é 1. Quando se soma 1 com 1, o resultado é 2, mas como 2 em binário é 10, o resultado é 0 (zero) e passa-se o outro 1 para a "frente", ou seja, para ser somado com o próximo elemento, conforme assinalado pelo asterisco,como no exemplo acima.

Exemplo 2:

    **
1100
+ 1111
-----
= 11011

Explicando: Nesse caso acima (exemplo 2), na quarta coluna da direita para a esquerda, nos deparamos com uma soma de 1 com 1 mais a soma do 1 ( * ) que veio da soma anterior. Quando temos esse caso (1 + 1 + 1), o resultado é 1 e passa-se o outro 1 para frente

Subtração de Binários

0-0=0
0-1=1 e vai 1* para ser subtraido no digito seguinte
1-0=1
1-1=0

Para subtrair dois números binários, o procedimento é o seguinte:

      * ***
1101110
- 10111
-------
= 1010111

Explicando: Quando temos 0 menos 1, precisamos "pedir emprestado" do elemento vizinho. Esse empréstimo vem valendo 2 (dois), pelo fato de ser um número binário. Então, no caso da coluna 0 - 1 = 1, porque na verdade a operação feita foi 2 - 1 = 1. Esse processo se repete e o elemento que cedeu o "empréstimo" e valia 1 passa a valer 0. Os asteriscos marcam os elementos que "emprestaram" para seus vizinhos. Perceba, que, logicamente, quando o valor for zero, ele não pode "emprestar" para ninguém, então o "pedido" passa para o próximo elemento e esse zero recebe o valor de 1.

Multiplicação de Binários

A multiplicação entre binários é similar à realizada com números decimais. A única diferença está no momento de somar os termos resultantes da operação:

          1 0 1 1
x 1 0 1 0
---------
0 0 0 0
+ 1 0 1 1
+ 0 0 0 0
+ 1 0 1 1
---------------
= 1 1 0 1 1 1 0
*

Perceba que na soma de 0 e 1 o resultado será 1, mas na soma de 1 com 1, ao invés do resultado ser 2, ele será 0 (zero) e passa-se o 1 para a próxima coluna, conforme assinalado pelo asterisco. Nota que se a soma passar de 2 dígitos, deve-se somar o número em binário correspondente ( ex. 7 = 111, 6 = 110, 5 = 101, 4 = 100, 3 =11).

            1 1 1
x 1 1 1
---------
1 1 1
+ 1 1 1
+ 1 1 1
---------------
= 1 1 0 0 0 1

No caso, a terceira coluna a soma dá 4 (com mais um da anterior), que adiciona um "1" duas colunas depois (100).

Divisão de Binários

Essa operação também é similar àquela realizada entre números decimais:

   110 |__10__
- 100 11—010
- 10—00

Deve-se observar somente a regra para subtração entre binários. Nesse exemplo a divisão de 110 por 10 teve como resultado 11.

Códigos Binários

A conversão de um número decimal no seu equivalente binário é chamada codificação. Um número decimal é expresso como um código binário ou número binário. O sistema numérico binário, como apresentado, é conhecido como código binário puro. Este nome o diferencia de outros tipos de códigos binários.

Decimal Codificado em Binário

O sistema numérico decimal é fácil de se usar devido à familiaridade. O sistema numérico binário é menos conveniente de se usar pois nos é menos familiar. É difícil olhar em número binário e rapidamente reconhecer o seu equivalente decimal.

Por exemplo, o número binário 1010011 representa o número decimal 83. É difícil dizer imediatamente, por inspeção do número, qual seu valor decimal. Entretanto, em alguns minutos, usando os procedimentos descritos anteriormente, pode-se prontamente calcular seu valor decimal. A quantidade de tempo que leva para converter ou reconhecer um número binário é uma desvantagem no trabalho com este código, a despeito das numerosas vantagens de "hardware".

Os engenheiros reconheceram este problema cedo, e desenvolveram uma forma especial de código binário que era mais compatível com o sistema decimal. Como uma grande quantidade de dispositivos digitais, instrumentos e equipamentos usam entradas e saídas decimais, este código especial tornou-se muito difundido e utilizado. Esse código especial é chamado decimal codificado em binário (BCD - binary coded decimal). O código BCD combina algumas das características dos sistemas numéricos binário e decimais.

Código BCD 8421

O código BCD é um sistema de representação dos dígitos decimais desde 0 até 9 com um código binário de 4 bits. Esse código BCD usa o sistema de pesos posicionais 8421 do código binário puro. Exatamente como binário puro, pode-se converter os números BCD em seus equivalentes decimais simplesmente somando os pesos das posições de bits onde aparece 1.

Decimal Binário Puro BCD
0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001
10 1010 0001 0000
11 1011 0001 0001
12 1100 0001 0010
13 1101 0001 0011
14 1110 0001 0100
15 1111 0001 0101
Decimal, Binário Puro e BCD

Observe, entretanto, que existem apenas dez códigos válidos. Os números binários de 4 bits representando os números decimais desde 10 até 15 são inválidos no sistema BCD. Para representar um número decimal em notação BCD substitue-se cada dígito decimal pelo código de 4 bits apropriados.

Por exemplo, o inteiro decimal 834 em BCD é 1000 0011 0100. Cada dígito decimal é representado pelo seu código BCD 8421 equivalente. Um espaço é deixado entre cada grupo de 4 bits para evitar confusão do formato BCD com o código binário puro. Este método de representação também se aplica as frações decimais.

Por exemplo, a fração decimal 0,764 é “0.0111 0110 0100” em BCD. Novamente, cada dígito decimal é representado pelo seu código equivalente 8421, com um espaço entre cada grupo.

Uma vantagem do código BCD é que as dez combinações do código BCD são fáceis de lembrar. Conforme se começa a trabalhar com números binários regularmente, os números BCD tornam-se tão fáceis e automáticos como números decimais. Por esta razão, por simples inspeção da representação BCD de um número decimal pode-se efetuar a conversão quase tão rápido como se já estivesse na forma decimal.

Como exemplo, converter o número BCD no seu equivalente decimal. 0110 0010 1000.1001 0101 0100 = 628,954

O código BCD simplifica a interface Homem-máquina, mas é menos eficiente que o código binário puro. Usam-se mais bits para representar um dado número decimal em BCD que em notação binária pura.

Por exemplo, o número decimal 83 é escrito como 1000 0011. Em código binário puro, usam-se apenas 7 bits para representar o número 83. Em BCD, usam-se 8 bits. O código BCD é ineficiente, pois, para cada bit numa palavra de dado, há usualmente alguma circuitaria digital associada. A circuitaria extra associada com o código BCD custa mais, aumenta a complexidade do equipamento e consome mais energia. Operações aritméticas com números BCD também consomem mais tempo e são mais complexas que aquelas com números binários puros. Com quatro bits de informação binária, você pode representar um total de 24 = 16 estados diferentes ou os números decimais equivalentes desde o 0 até o 15. No sistema BCD, seis destes estados (10-15) são desperdiçados.

Quando o sistema numérico BCD é usado, alguma eficiência é perdida, mas aumenta-se o entendimento entre o equipamento digital e o operador humano.

[editar] Conversão Binário para BCD

A conversão de decimal para BCD é simples e direta. Entretanto, a conversão de binário para BCD não é direta. Uma conversão intermediária deve ser realizada primeiro. Por exemplo, o número 1011.01 é convertido no seu equivalente BCD.

Primeiro o número binário é convertido para decimal. 1011.01 = (1x23)+(0x22)+(1x21)+(1x20)+(0x2-1)+(1x2-2) =8+0+2+1+0+0,25 = 11,2510

Então o resultado decimal é convertido para BCD. 11,2510 = 0001 0001.0010 0101

Para converter de BCD para binário, as operações anteriores são invertidas. Por exemplo, o número BCD 1001 0110.0110 0010 0101 é convertido no seu equivalente binário.

  1. O número BCD é convertido para decimal. 1001 0110.0110 0010 0101 = 96,625
  2. O resultado decimal é convertido para binário
Inteiro Resto Posição Fração Inteiro Posição
96 ÷ 2 = 48 0 -> LSB 0,625 x 2 = 1,25 = 0,25 1 <- MSB 48 ÷ 2 = 24 0 0,250 x 2 = 0,50 = 0,50 0 24 ÷ 2 = 12 0 0,500 x 2 = 1,00 = 0 0 <- LSB 12 ÷ 2 = 06 0 06 ÷ 2 = 03 0 03 ÷ 2 = 01 1 01 ÷ 2 = 00 1 <- MSB 9610 = 11000002 0,62510 = 0.101 96,62510 = 9610 + 0,62510= 1100000 + 0.101 = 1100000.101

Como o número decimal intermediário contém uma parte inteira e uma parte decimal, cada parte é convertida como visto anteriormente. A soma binária (inteiro mais fração) 1100000.101 é equivalente ao número BCD 1001 0110.0110 0010 0101.

Vários códigos binários são chamados códigos alfanuméricos pois eles são usados para representar caracteres assim como números.

Código ASCII

O "American Standard Code for Information Interchange" comumente referido como ASCII – também chamado ASCII completo, ou ASCII estendido –, é uma forma especial de código binário que é largamente utilizado em microprocessadores e equipamentos de comunicação de dados.

Um novo nome para este código que está se tornando popular é "American National Standard Code for Information" (ANSCII). Entretanto, utilizaremos o termo consagrado, ASCII. É um código binário que usado em transferência de dados entre microprocessadores e seus dispositivos periféricos, e em comunicação de dados por rádio e telefone. Com 7 bits pode-se representar um total de 27 = 128 caracteres diferentes. Estes caracteres compreendem números decimais de 0 até 9, letras maiúsculas e minúsculas do alfabeto, mais alguns outros caracteres especiais usados para pontuação e controle de dados!

Juros compostos

O atual sistema financeiro utiliza o regime de juros compostos, pois ele oferece uma maior rentabilidade se comparado ao regime de juros simples, onde o valor dos rendimentos se torna fixo, e no caso do composto o juro incide mês a mês de acordo com o somatório acumulativo do capital com o rendimento mensal, isto é, prática do juro sobre juro. As modalidades de investimentos e financiamentos são calculadas de acordo com esse modelo de investimento, pois ele oferece um maior rendimento, originando mais lucro.

Considere que uma pessoa aplique R$ 500,00 durante 8 meses em um banco que paga 1% de juro ao mês. Qual será o valor ao final da aplicação?

A tabela demonstrará mês a mês a movimentação financeira na aplicação do regime de juros compostos.



No final do 8º mês o montante será de R$ 541,43.

Uma expressão matemática utilizada no cálculo dos juros compostos é a seguinte:

M = C * (1 + i)t, onde:
M: montante
C: capital
i: taxa de juros
t: tempo de aplicação

Obs.: Os cálculos envolvendo juros compostos exigem conhecimentos de manuseio de uma calculadora científica.

Exemplo 2
Qual o montante produzido por um capital de R$ 7.000,00 aplicados a uma taxa de juros mensais de 1,5% durante um ano?

C: R$ 7.000,00
i: 1,5% ao mês = 1,5/100 = 0,015
t: 1 ano = 12 meses

M = C * (1 + i)t
M = 7000 * (1 + 0,015)12
M = 7000 * (1,015)12
M = 7000 * 1,195618
M = 8369,33
O montante será de R$ 8.369,33.

Com a utilização dessa fórmula podemos também calcular o capital de acordo com o montante.

Adição, subtração e multiplicação de número complexo

Os números complexos são escritos na sua forma algébrica da seguinte forma: a + bi, sabemos que a e b são números reais e que o valor de a é a parte real do número complexo e que o valor de bi é a parte imaginária do número complexo.

Podemos então dizer que um número complexo z será igual a a + bi (z = a + bi).

Com esses números podemos efetuar as operações de adição, subtração e multiplicação, obedecendo à ordem e características da parte real e parte imaginária.

Adição

Dado dois números complexos quaisquer z1 = a + bi e z2 = c + di, ao adicionarmos teremos:

z1 + z2
(a + bi) + (c + di)

a + bi + c + di

a + c + bi + di

a + c + (b + d)i

(a + c) + (b + d)i

Portanto, z1 + z2 = (a + c) + (b + d)i.

Exemplo:
Dado dois números complexos z1 = 6 + 5i e z2 = 2 – i, calcule a sua soma:

(6 + 5i) + (2 – i)
6 + 5i + 2 – i
6 + 2 + 5i – i
8 + (5 – 1)i
8 + 4i

Portanto, z1 + z2 = 8 + 4i.

Subtração

Dado dois números complexos quaisquer z1 = a + bi e z2 = c + di, ao subtraímos teremos:

z1 - z2
(a + bi) - (c + di)

a + bi – c – di

a – c + bi – di

(a – c) + (b – d)i

Portanto, z1 - z2 = (a - c) + (b - d)i.

Exemplo:
Dado dois números complexos z1 = 4 + 5i e z2 = -1 + 3i, calcule a sua subtração:

(4 + 5i) – (-1 + 3i)
4 + 5i + 1 – 3i
4 + 1 + 5i – 3i
5 + (5 – 3)i
5 + 2i

Portanto, z1 - z2 = 5 + 2i.

Multiplicação

Dado dois números complexos quaisquer z1 = a + bi e z2 = c + di, ao multiplicarmos teremos:

z1 . z2
(a + bi) . (c + di)

ac + adi + bci + bdi2
ac + adi + bci + bd (-1)
ac + adi + bci – bd
ac - bd + adi + bci
(ac - bd) + (ad + bc)i

Portanto, z1 . z2 = (ac + bd) + (ad + bc)I.

Exemplo:

Dado dois números complexos z1 = 5 + i e z2 = 2 - i, calcule a sua multiplicação:

(5 + i) . (2 - i)
5 . 2 – 5i + 2i – i2
10 – 5i + 2i + 1
10 + 1 – 5i + 2i
11 – 3i

Portanto, z1 . z2 = 11 – 3i.

Por Danielle de Miranda
Graduada em Matemática
Equipe Brasil Escola

Conjunto dos números complexos

Os números naturais surgiram da necessidade do homem de relacionar objetos a quantidades, os elementos que pertencem a esse conjunto são:
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...}, o zero surgiu posteriormente, com a finalidade de expressar algo nulo no preenchimento posicional.

O conjunto dos números naturais surgiu simplesmente com o propósito da contagem, no comércio sua utilização esbarrava nas situações em que era preciso expressar prejuízos. Os matemáticos da época, no intuito de resolver tal situação, criaram o conjunto dos números inteiros, simbolizado pela letra Z.
Z = {... , -4,-3,-2,-1,0,1,2,3,4, ... }
Operações comerciais representando lucros ou prejuízos podiam ser calculadas, por exemplo:
20 – 25 = – 5 (prejuízo)
–10 + 30 = 20 (lucro)
–100 + 70 = – 30 (prejuízo)


Com a evolução dos cálculos, o conjunto dos números inteiros não estava satisfazendo algumas operações, assim foi estipulado um novo conjunto numérico: o conjunto dos números racionais. Esse conjunto consiste na união entre o conjunto dos números naturais com os números inteiros mais os numerais que podem ser escritos na forma de fração ou números decimais.

Q = { ... , -5; ...; - 4,7; ... ; - 2; ... ; -1;...; 0; ...; 2,65; ...; 4; ... }

Alguns números decimais não podem ser escritos na forma de fração, dessa forma não pertencem ao conjunto dos racionais, eles formam o conjunto dos números irracionais. Este conjunto possui números importantes para a Matemática, como o número pi (~3,14) e o número de ouro (~1,6).

A união dos conjuntos dos números Naturais, Inteiros, Racionais e Irracionais formam o conjunto dos números Reais.

A criação do conjunto dos números Reais se deu ao longo de todo o processo de evolução da Matemática, atendendo às necessidades da sociedade. Na busca por novas descobertas, os matemáticos esbarraram em uma situação oriunda da resolução de uma equação do 2º grau. Vamos resolver a equação x² + 2x + 5 = 0 aplicando o Teorema de Bháskara:



Note que ao desenvolver o teorema nos deparamos com a raiz quadrada de um número negativo, sendo impossível a resolução dentro do conjunto dos números Reais, pois não existe número negativo que elevado ao quadrado tenha como resultado número negativo. A resolução destas raízes só foi possível com a criação e adequação dos números complexos, por Leonhard Euler. Os números Complexos são representados pela letra C e mais conhecidos como o número da letra i, sendo designada nesse conjunto a seguinte fundamentação: i² = -1.
Esses estudos levaram os matemáticos ao cálculo das raízes de números negativos, pois com a utilização do termo i² = -1, também conhecido como número imaginário, é possível extrair a raiz quadrada de números negativos. Observe o processo:



Os números Complexos constituem o maior conjunto numérico existente.

N: conjunto dos números Naturais
Z: conjunto dos números Inteiros
Q: conjunto dos números Racionais
I: conjunto dos números Irracionais
R: conjunto dos números Reais
C: conjunto dos números Complexos



Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola