1.200.000 VISUALIZAÇÕES! OBRIGADO!!

segunda-feira, 29 de março de 2010

Prisma

Consideremos o prisma como um sólido geométrico formado pelos seguintes elementos: base, altura, vértices, arestas e faces laterais. Os prismas podem apresentar diversas formas, mas algumas características básicas definem esse sólido geométrico. Por exemplo, o número de faces do prisma será exatamente igual ao número de lados do polígono que constitui suas bases (superior e inferior), dessa forma, sua classificação quanto ao número de lados pode ser:

Triangular – base constituída de triângulos.
Quadrangular – base constituída de quadriláteros.
Pentagonal – base constituída de pentágonos.
Hexagonal – base constituída de hexágonos.
Heptagonal – base constituída de heptágonos.
Octogonal – base constituída de octógonos.


Os prismas também podem ser classificados como retos ou oblíquos. Os prismas retos são aqueles em que a aresta lateral forma com a base um ângulo de 90º, os oblíquos são aqueles em que as arestas formam ângulos diferentes de 90º.

Todos os prismas possuem área da base, área lateral, área total e volume. Todas essas medidas dependem do formato do polígono que se encontra nas bases; por exemplo, os prismas acima possuem em sua base um pentágono, portanto, para calcularmos a área dessa base devemos determinar a área do pentágono. No caso do prisma pentagonal reto, as faces laterais constituem retângulos e a do prisma oblíquo é formada por paralelogramos.
A área total de um prisma é calculada somando a área lateral e o dobro da área da base. E o volume é determinado calculando a área da base multiplicada pela medida da altura.

Observe alguns exemplos de prismas:

Prisma Triangular Reto



Prisma Hexagonal Reto




Prisma Pentagonal Oblíquo

Prisma Quadrangular Oblíquo

A área do círculo

A área do círculo é diretamente proporcional ao raio, que é a distância entre o centro e a sua extremidade. Para calcularmos a área do círculo, utilizamos a expressão matemática que relaciona o raio e a letra grega π (pi), que corresponde a, aproximadamente, 3,14.

A = π * r²

O círculo é determinado de acordo com o aumento do número de lados de um polígono. Quanto mais lados um polígono apresenta, mais ele se assemelha a um círculo. Observe as figuras na seguinte ordem: hexágono (6 lados), octógono (8 lados), dodecágono (12 lados) e icoságono (20 lados).

Vamos determinar a área de algumas regiões circulares.

Exemplo 1

Determine quantos metros quadrados de grama são necessários para preencher uma praça circular com raio medindo 20 metros.




A = π * r²
A = 3,14 * 20²
A = 3,14 * 400
A = 1256 m²


Serão necessários 1256 m² de grama.


Exemplo 2

Determine a área da região em destaque representada pela figura a seguir. Considerando que a região maior possui raio medindo 10 metros, e a região menor, raio medindo 3 metros.



Área da região com raio medindo 10 metros

A = π * r²
A = 3,14 * 10²
A = 3,14 * 100
A = 314 m²

Área da região com raio medindo 3 metros

A = π * r²
A = 3,14 * 3²
A = 3,14 * 9
A = 28,26 m²

Área da região em destaque
A = 314 – 28,26
A = 285,74 m²


Exemplo 3

Deseja–se ladrilhar uma área no formato circular de 12 metros de diâmetro. Ao realizar o orçamento da obra, o pedreiro aumenta em 10% a quantidade de metros quadrados de ladrilhos, afirmando algumas perdas na construção. Determine quantos metros quadrados de ladrilhos devem ser comprados.

Diâmetro igual a 12, então o raio equivale a 6 metros.

A = π * r²
A = 3,14 * 6²
A = 3,14 * 36
A = 113,04 m²

Calculando 10%
10% = 10/100
10/100 * 113,04
11,30

Total de ladrilhos a serem comprados
113,04 + 11,30
124,34 m²

Será preciso comprar 124,34 m² de ladrilhos.

Área do setor circular

O setor de um círculo é uma região delimitada por dois segmentos de retas que partem do centro para a circunferência. Esses segmentos de reta são os raios do círculo, veja a figura:



O ângulo α é chamado de ângulo central.

Dessa forma, percebemos que o setor circular é uma parte da região circular, ou seja, ele é uma fração da área do círculo. Assim podemos afirmar que a área do setor circular é diretamente proporcional ao valor de α, pois a área de todo o círculo é diretamente proporcional a 360º.

Assim podemos montar a seguinte relação (regra de três):

Área do setor ---------- α
Área do círculo -------- 360°

Asetor = α
πr² 360°

Asetor . 360° = α . πr²

Asetor = α . πr²
360°

Exemplo: Determine a área do setor circular de raio 6cm cujo ângulo central mede:

• 60°

Asetor = 60° . π6²
360°

Asetor = 60° . π 36
360°

Asetor = 6π cm²

• π/2

π/2 corresponde a 90°

Asetor = 90° . π6²
360°

Asetor = 90° . π36
360°

Asetor = 9π cm²


Medindo a área do arco de um círculo
A área total de um círculo é proporcional ao tamanho do raio e pode ser calculada pela expressão π * r², na qual π equivale a 3,14 e r é a medida do raio do círculo. O círculo pode ser dividido em infinitas partes, as quais recebem o nome de arcos (partes de um círculo). Os arcos de uma região circular são determinados de acordo com a medida do ângulo central, e é com base nessa informação que calcularemos a área de um segmento circular.

Uma volta completa no círculo corresponde a 360º, valor que podemos associar à expressão do cálculo da área do círculo, π * r². Partindo dessa associação podemos determinar a área de qualquer arco com a medida do raio e do ângulo central, através de uma simples regra de três. Observe:

360º ------------- π * r²
θº ------------------ x

onde:
π = 3,14
r = raio do círculo
θº = medida do ângulo central
x = área do arco

Exemplo 1

Determine a área de um segmento circular com ângulo central de 32º e raio medindo 2 m.
Resolução:

360º ------------- π * r²
32º ------------------ x

360x = 32 * π * r²
x = 32 * π * r² / 360
x = 32 * 3,14 * 2² / 360
x = 32 * 3,14 * 4 / 360
x = 401,92 / 360
x = 1,12

A área do segmento circular possui aproximadamente 1,12 m².



Exemplo 2

Qual a área de um setor circular com ângulo central medindo 120º e comprimento do raio igual a 12 metros.

360º ------------- π * r²
120º ------------------ x


360x = 120 * π * r²
x = 120 * π * r² / 360
x = 120 * 3,14 * 12² / 360
x = 120 * 3,14 * 144 / 360
x = 54259,2 / 360
x = 150,7

A área do setor circular citado corresponde, aproximadamente, a 150,7 m².

Área da coroa circular

Considere uma circunferência inscrita em outra circunferência, ou seja, duas circunferências concêntricas (mesmo centro), a região plana delimitada por elas é chamada de coroa circular.

Veja ilustrações abaixo:



Assim, teremos dois raios: um da circunferência maior e outro da menor.



Pela figura podemos dizer que a área da coroa circular será igual à diferença da área dos dois círculos que formam a coroa:

Acoroa = Acírculo maior – Acírculo menor

Acoroa = (π . R2) - (π . r2)

Acoroa = π . (R2 - r2)

Exemplo: Determine a área da superfície colorida:



AC = AO/2
AO = 10

Como a região colorida é 1/4 da coroa circular, teremos que dividir por 4 a área total da coroa:

Acolorida = π(R2 - r2)
4

Acolorida = π(152 - 102)
4
Acolorida = π (225 – 100)
4
Acolorida = π 125
4
Acolorida = 125π cm2
4

Exemplo: A região colorida na figura abaixo tem 32 π/25 m2 de área. Se o raio do arco mede 4m, quanto mede o raio do menor?



360° : 45° = 8, isso significa que a parte pintada corresponde a 1/8 da coroa circular, assim podemos dizer que a coroa terá área igual a:

A coroa = 32 π/25 . 8 = 256 π / 25

Para descobrir o valor do raio menor basta aplicar a fórmula e fazer as devidas substituições:

Acoroa = π . (R2 - r2)

256 π / 25 = π . (42 - r2)

256 π / 25 = π . (16 – r2)

10,24 = 16 – r2

10,24 – 16 = – r2 (-1)

-10,24 + 16 = r2

5,76 = r2

2,4 = r