1.200.000 VISUALIZAÇÕES! OBRIGADO!!

domingo, 11 de julho de 2010

Soma e Produto

Na resolução de uma equação do 2º grau temos três possibilidades de resultados, podemos encontrar duas raízes reais diferentes, duas raízes reais iguais ou nenhuma raiz real.

Quando existir raiz real na resolução de equações do 2º grau, podemos fazer relações entre essas raízes, como: soma (x’ + x”) e produto (x’ . x”).

Para provarmos a soma e o produto de duas raízes reais de uma equação do 2º grau devemos partir da sua forma geral:

ax2 + bx + c = 0
Dessa forma geral, podemos encontrar duas raízes reais x’ e x”, utilizando Bháskara.


SOMA
Somando as duas raízes:
x’ + x”



- b - √∆ - b + √∆ +√∆ e -√∆ cancelam, pois sua soma será zero.
2a

-2b :2
2a :2

-b
a

Portanto, somar as duas raízes de uma equação do segundo grau é o mesmo que:
x’ + x” = -b
a

PRODUTO
Multiplicando as duas raízes:
x’ . x”



Portanto, o produto das duas raízes de uma equação do segundo grau é o mesmo que:
x’ . x” = c
a

Além de utilizarmos a fórmula de Bháskara para encontrarmos o valor de x’ e x”, podemos utilizar o produto e a soma das raízes, veja como:

Dada a equação x2 – 7x + 10 = 0. Para encontrar a soma e o produto de suas raízes não é necessário que saibamos qual é o valor delas, mas devemos retirar da equação os seus coeficientes.
a = 1
b = - 7
c = 10



Chegamos a duas conclusões: a soma dessas raízes será 7 e o produto delas será 10. Por tentativas podemos encontrar números que multiplicados resultem em 10.
5 . 2 = 10

(-5) . (-2) = 10

1 . 10 = 10

(-1) . (-10) = 10

Desses produtos deve-se escolher aquele que se somarmos os seus fatores encontraremos como resultado 7.
5 + 2 = 7

Portanto, x’ = 5 e x” = 2.

Inequações do 2º grau

As inequações são expressões matemáticas que utilizam na sua formatação, os seguintes sinais de desigualdades:

>: maior que
<: menor que
≥: maior ou igual
≤: menor ou igual
≠: diferente


As inequações do 2º grau são resolvidas utilizando o teorema de Bháskara. O resultado deve ser comparado ao sinal da inequação, com o objetivo de formular o conjunto solução.

Exemplo 1

Vamos resolver a inequação 3x² + 10x + 7 <>.

S = {x Є R / –7/3 < x < –1}


Exemplo 2

Determine a solução da inequação –2x² – x + 1 ≤ 0.

S = {x Є R / x < –1 ou x > 1/2}



Exemplo 3

Determine a solução da inequação x² – 4x ≥ 0.


S = {x Є R / x ≤ 0 ou x ≥ 4}


Exemplo 4

Calcule a solução da inequação x² – 6x + 9 > 0.

S = {x Є R / x <> 3}

Uma inequação será identificada como modular se dentro do módulo tiver uma expressão com uma ou mais incógnitas, veja alguns exemplos de inequações modulares:

|x| > 5

|x| < 5

|x – 3| ≥ 2


Ao resolvermos uma inequação modular buscamos encontrar os possíveis valores que a incógnita deverá assumir, obedecendo às regras resolutivas de uma inequação e as condições de existência de um módulo.

Condição de existência de um módulo, considerando k um número real positivo:

Se |x| < k então, – k < x < k

Se |x| > k então, x < – k ou x > k


Para compreender melhor a resolução de inequações modulares veja os exemplos abaixo:

Exemplo 1

|x| ≤ 6

Utilizando a seguinte definição: se |x| < k então, – k < x < k, temos que:

– 6 ≤ x ≤ 6

S = {x Є R / – 6 ≤ x ≤ 6}


Exemplo 2

|x – 7| <>

Utilizando a seguinte definição: se |x| < k então, – k < x < k, temos que:

– 2 < x – 7 < 2
– 2 + 7 < x < 2 + 7
5 <>

S = {x Є R / 5 <>



Exemplo 3

|x² – 5x | > 6

Precisamos verificar as duas condições:

|x| > k então, x < – k ou x > k

|x| < k então, – k < x < k


Fazendo |x| > k então, x < – k ou x > k
x² – 5x > 6
x² – 5x – 6 > 0
Aplicando Bháskara temos:
x’ = 6
x” = –1

Pela propriedade:
x > 6
x < –1


Fazendo |x| < k então, – k < x < k
x² – 5x < – 6
x² – 5x + 6 < 0
Aplicando Bháskara temos:
x’ = 3
x” = 2

Pela propriedade:
x > 2
x < 3

S = {x Є R / x < –1 ou 2 <> 6}.